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Abstract

This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the pro-
posed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms
in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves
explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied
to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are
required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces
a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions,
boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selec-
tive length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an
improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy
of the proposed schemes are verified by executing four benchmark test cases.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Compact high-order finite difference schemes have been extensively studied and widely used to compute
problems involving incompressible, compressible and hypersonic flows [13–22,39], computational aeroacous-
tics [23–27,36,48], computational electromagnetics [28–30] and several other practical applications [31–35].
Using compact stencils that relate various derivatives with function values at discrete nodes, compact
schemes not only offer higher order approximations to differential operators but provide higher resolution
characteristics for the same number of scheme points in comparison to explicit finite difference schemes.
Due to their high formal order, good spectral resolution and their flexibility, compact high-order finite
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difference schemes are the most attractive schemes for flows with multiscales, e.g., turbulence. The smallest
scales, which are dictated by the physical viscosity of the flow, become unresolvable with the mesh size, and
they suffer from instabilities. There are three remedies [1] for this unwanted behavior: explicit filtering, arti-
ficial viscosity and schemes with inherent dissipation. Of these three remedies, the satisfactory way of phys-
ically dissipating unresolvable wavenumbers is to use a high-order compact upwind scheme. Upwinding in
compact schemes has earlier been incorporated by Tolstykh [2,3] through a Murman-type switch [4]. The
CUD-3 and CUD-5 [5] were their most famous schemes. In subsequent years, Tolstykh constructed compact
upwind schemes with arbitrary order via linear combinations of ‘‘elementary’’ CUD operators of fixed order
(say, third order). Some details of the technique (multioperator) can be found, for example, in [6,7]. How-
ever, in their work, no effort was made to optimize the resolution characteristics. An optimized version using
a free parameter was introduced by Adams and Shariff [40]. Not adopting the idea of ‘‘multioperator’’, which
was interesting but a bit complicated, Adams and Shariff [40] constructed their schemes basically following
Lele’s technique [12], namely, based on Hermite interpolation, but dropped the requirement of symmetric/
antisymmetric coefficients. In this paper, the method of developing compact upwind schemes is almost the
same as Adams and Shariff’s [40] except that the second derivative appears. We also note that some partic-
ular forms of compact upwind schemes have been proposed in [8–10]. Lele [12] emphasized the distinction
between the order of approximation and the spectral resolution and applied Pade schemes for the solution
of compressible and incompressible flow problems. Mahesh [37] presented and analyzed combined compact
uniform grid finite difference schemes (C-D schemes) which evaluate the first and the second derivative simul-
taneously. The generalized compact (GC) schemes and some of their important properties were discussed by
Shen et al. [11]. The GC schemes can be considered as a more general version of the standard Pade schemes
discussed by Lele [12]. The appearance of higher derivatives in both C-D schemes and GC schemes gives rise
to the spectral accuracy of the first derivative. The family of compact upwind schemes developed in this study
can be categorized as GC schemes. They have a speed advantage as well as higher resolution in comparison
to other compact schemes. Often, the tri-diagonal matrix inversion is required in applications of the com-
monly used compact schemes. However, using the proposed schemes, one can sequentially calculate all
the derivatives by explicit means if the boundary value problem is solved. When our schemes are applied
to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inver-
sions are required.

Sengupta et al. [36] pointed out that the definition of G–K–S stability [38] (also known as Lax stability)
might be too weak and hence it would not be a practical option to use those compact schemes for DNS,
CAA and CEM, which are only G–K–S stable. They also developed a Fourier–Laplace transform based spec-
tral method for the purpose of evaluating the spectral resolution, numerical stability and dispersion relation
preservation (DRP) property of any discrete computing technique. Using this analysis, some well-known com-
pact schemes that were found to be G–K–S and time stable are shown to be unstable for selective length scales
[36]. Subsequently, further improvements of this analysis method were obtained in [49–51] to provide results
for different spatial and temporal discretization methods. In the following sections, we refer to these schemes
as full spatial stable (referred to later on in this paper as FS-stable for short) if they are stable for all interior
and boundary points analyzed in isolation by this method. We consider the linear wave equation
ou
ot
þ ou

ox
¼ 0 ð1:1Þ
as a model equation, working in the computational plane with a uniform grid of size h and total point number
N. It is assumed that computations with nonuniform grids can define analytical mappings between the non-
uniform grid and a corresponding uniform grid. The metrics of the mapping may then be used to relate the
derivatives on the uniform grid to those on the nonuniform grid. If the Dirichlet boundary condition is
adopted on the first point, the FS-stability means that spatial discretization schemes are all stable for points
j ¼ 2; 3; . . . ;N . In the present paper, our consideration is confined to this situation. In order to achieve FS-
stability, a new method for constructing stable boundary schemes is developed. Numerical examples show that
schemes that possess the property of FS-stability are asymptotically stable both in the scalar and system case.

If the flow fields involve shock waves, schemes should also be essentially oscillation-free near the disconti-
nuities. In recent years, many efforts have been devoted to the development of high resolution shock-capturing
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schemes that are higher-order accurate in smooth regions. For details of the background on this issue the
reader is referred to [39]. Also, it is pertinent to pay attention to the commonly used Jameson–Schmidt–Turkel
switching function (JST switch) [46], which can be interpreted as a limiter. The switch activates the dissipation
term (usually the second-difference term) at not only discontinuities but also extrema in the smooth region,
which may be too dissipative for DNS and other high-resolution calculations. A novel switch based on second
derivatives was introduced by Sengupta et al. [50]. The method was very simple and was proven to be effective
for diagnosing the discontinuity for the Burgers equation. However, the threshold value must be selected cau-
tiously, because it depends on what problem is being solved.

Ren et al. [39] considers the hybrid scheme as the weighted average of two sub-schemes: the conservative
compact scheme proposed by Pirozzoli [45] and the WENO scheme. The weight function is designed to be
continuous so that the abrupt transition from one sub-scheme to another is avoided. The shortcoming of
the smoothness indicator in Ref. [39] is that it may take some points in smooth waves, especially in high-wave-
number waves, as points of discontinuity. In order to eliminate this deficiency, we identify the discontinuity in
two steps, which are discussed in detail in Section 4.1. Numerical tests show a significant improvement in res-
olution for scalar cases and flows with complex structures.

This paper is structured in the following manner. In the next section, we derive a new family of compact
upwind schemes in which free parameters are optimized for higher spectral resolution. Also, the dispersive
and dissipative features of our schemes are compared to other compact schemes. In Section 3, a new method
for constructing boundary schemes is presented. In order to pursue good resolution, the boundary schemes are
optimized. The third section also illustrate the process of solving derivatives when our schemes are adopted
with periodic boundaries. In Section 4, the schemes are made shock-capturing by hybridizing them with
WENO schemes. The hybridization procedure basically follows Ren et al.’s [39] method. An important
improvement is achieved by filtering out points in smooth waves that might be mistaken for points of discon-
tinuity, which, though important, has not attracted much attention before. In Section 5, the computational
cost of the first derivatives is assessed. In Section 6, four benchmark test cases are executed to confirm the
effectiveness of the hybrid schemes when applied to systems of equations. The concluding remarks are given
in Section 7.
2. The interior scheme

2.1. The interior schemes and resolution optimization

Consider the following model equation and its semi-discrete approximation
ou
ot
þ c

ou
ox
¼ 0; c is a positive constant; ð2:1Þ

ou
ot
þ cF j ¼ 0; ð2:2Þ
where F j is an approximation of the first derivative ou=ox, and F j can be obtained from the spatial discreti-
zation scheme. In the present paper, we are concerned with the GC schemes [11] from which F j can be derived.
A simple example of GC schemes is given in the following expressions:
hða1;�1F j�1 þ a1;0F j þ a1;1F jþ1Þ þ h2ða2;�1Sj�1 þ a2;0Sj þ a2;1Sjþ1Þ ¼
Xk2

n¼�k1

a0;nujþn; ð2:3aÞ

hð�a1;�1F j�1 þ �a1;0F j þ �a1;1F jþ1Þ þ h2ð�a2;�1Sj�1 þ �a2;0Sj þ �a2;1Sjþ1Þ ¼
Xk2

n¼�k1

�a0;nujþn; ð2:3bÞ
where Sj is the approximation of o
2u=ox2. a1;i, a2;i, �a1;i, �a2;i ði ¼ �1; 0; 1Þ and a0;n, �a0;n ðn ¼ �k1; . . . ; k2Þ are

coefficients to be determined. Let a1;1 ¼ �a1;1 ¼ a2;1 ¼ �a2;1 ¼ 0; then we obtain the following expected form in
which derivative terms are confined to the left side of the stencil:
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hða1;�1F j�1 þ a1;0F jÞ þ h2ða2;�1Sj�1 þ a2;0SjÞ ¼
Xk2

n¼�k1

a0;nujþn; ð2:4aÞ

hð�a1;�1F j�1 þ �a1;0F jÞ þ h2ð�a2;�1Sj�1 þ �a2;0SjÞ ¼
Xk2

n¼�k1

�a0;nujþn: ð2:4bÞ
In this family of compact schemes, one or two coefficients are defined as free parameters for resolution opti-
mization. The method of optimizing the resolution is almost the same as the one used in the literature by
Adams and Shariff [40]. The details of determining coefficients are shown below.

First, a three-point third-order (2.4)-like scheme is developed. We set m ¼ 2; k1 ¼ 1; k2 ¼ 1, where m

denotes the highest order of the derivatives that appear in the schemes, and j� k1 and jþ k2 are the smallest
and largest node serial numbers in the stencil, respectively. Substituting the set values of k1 and k2 into Eq.
(2.4a), we have
hða1;�1F j�1 þ a1;0F jÞ þ h2ða2;�1Sj�1 þ a2;0SjÞ ¼
X1

n¼�1

a0;nujþn: ð2:5Þ
There are seven coefficients in this scheme, one of which disappears due to normalization. The constraint of
the order conditions (equality up to a term of order Oðh3Þ in Eq. (2.5) requires four equations based on the
Taylor expansion.) leaves only two free parameters. The other coefficients are linear functions of the two free
parameters.

Set a1;0 ¼ 1 for normalization, and let a0;0, a2;0 be the two free parameters. Then we get two linearly inde-
pendent equations by substituting a0;0 ¼ a, a2;0 ¼ 0 and a0;0 ¼ 0, a2;0 ¼ b into Eq. (2.5), respectively. The
scheme is the combination of the following two equations:
hða1;�1F j�1 þ F jÞ þ h2ða2;�1Sj�1Þ ¼ a0;�1uj�1 þ auj þ a0;1ujþ1; ð2:6aÞ
hð�a1;�1F j�1 þ F jÞ þ h2ð�a2;�1Sj�1 þ bSjÞ ¼ �a0;�1uj�1 þ �a0;1ujþ1; ð2:6bÞ
where
a1;�1 ¼ 3a=4� 1=4; a0;�1 ¼ �7a=8� 3=8; a2;�1 ¼ a=4� 1=4; a0;1 ¼ �a=8þ 3=8;

�a0;�1 ¼ �3=8� 3b=4; �a2;�1 ¼ �1=4þ b=2; �a0;1 ¼ 3=8þ 3b=4; �a1;�1 ¼ �1=4þ 3b=2:
The dispersion and dissipation errors of Eqs. (2.6a) and (2.6b) are analyzed in the wavenumber domain. Fou-
rier analysis provides an effective way to quantify these errors of difference schemes. The Fourier transforms of
the left and right sides of Eqs. (2.6a) and (2.6b) can be
i�jða1;�1e�ij þ 1Þ~u� �j2a2;�1~u ¼ ða0;�1e�ij þ aþ a0;1eijÞ~u; ð2:7aÞ
i�jð�a1;�1e�ij þ 1Þ~u� �j2ð�a2;�1e�ij þ bÞ~u ¼ ð�a0;�1e�ij þ �a0;1eijÞ~u: ð2:7bÞ
In Eqs. (2.7), i ¼
ffiffiffiffiffiffiffi
�1
p

; and j is called the scaled wavenumber because it is the product of wavenumber k and
grid size h; �j and �j2 are functions of j and are called the modified scaled wavenumber for the first and second
derivative operators, respectively. The differences between �j and j and between j2 and j2 represent the differ-
encing error in the wavenumber domain. �j can be derived from (2.7a) and (2.7b) after simple diminution oper-
ation, so it is a function of a, b and j, namely j ¼ �jða; b; jÞ. �j can be divided into real and imaginary parts,
which represent the dispersion and the dissipation error, respectively. To ensure that the scheme is a good
approximation of the first derivative, the modified scaled wavenumber should agree with the corresponding
scaled wavenumber in as wide a range of wavenumbers as possible. We optimize the scheme numerically
by minimizing a target function, which is
e ¼ a
Z top

0

ðj�Reð�jÞÞ2 djþ b
Z top

0

ðImð�jÞÞ2 dj: ð2:8Þ
Free parameters a and b enter the definition of e through the substitution of the expression of �j into Eq. (2.8).
The upper limit of integration in Eq. (2.8) is chosen as top 6 p. a is the weight for the dispersion error; b is the
weight for the dissipation error. We require the scheme to satisfy two constraints:
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(a) The scheme is required to satisfy the necessary stability criterion [40] (Note that c is positive in Eq.
(2.1).)
�Imð�jÞP 0; ð2:9Þ
(b) Solving Eqs. (2.6a) and (2.6b), F j and Sj can be expressed as linear functions of F j�1 and Sj�1 as follows:
F j ¼ ~a1;�1F j�1 þ ~a2;�1Sj�1 þ
X1

n¼�1

~a0;nujþn; ð2:10aÞ

Sj ¼ e~a1;�1F j�1 þ e~a2;�1Sj�1 þ
X1

n¼�1

e~a0;nujþn: ð2:10bÞ
In order not to magnify the numerical error in F j and Sj which is due to the round-off error of the machine or
other reasons, the following constraints must be added:
j~a1;�1j þ j~a2;�1j < 1;

je~a1;�1j þ jeea 2;�1j < 1;
where ~a1;�1; ~a2;�1; e~a1;�1 and e~a2;�1 are functions of h and coefficients in Eqs. (2.6). Here we set h ¼ 1 for
simplicity.

Locally optimal free coefficients that minimize e under the constraints (a) and (b) are obtained numerically.
A standard sequential quadratic programming (SQP) method [59] is used. The selection of this algorithm is
based on its ready availability (as the IMSL routine NCONF) and on its superior performance and reliability
compared to other approaches [59]. For details the reader is referred to [59,60]. The optimization result
strongly depends on the particular choice of parameters in Eq. (2.8) and is also sensitive to the initial guess.

In order to achieve high resolution, we set a ¼ 1 and b ¼ 0 in the optimization of the scheme. Choosing
top ¼ 1:5, we find the optimal parameters are a ¼ 0:9033682206946493 and b ¼ 0:3268142702664771. So far
the three-point third-order optimized GC scheme has been developed. We call this scheme 3P3Om2 for brief-
ness in this paper, where the three numbers in the name sequentially denote the number of points included, the
order of the formal accuracy and the highest order of the derivatives appearing in the scheme, respectively.

We can construct schemes of this family with up to seventh-order accuracy in the same way. All of these
schemes have high resolution and the dissipation properties are also satisfying.

Another third-order accuracy scheme is
a1;�1F j�1 þ a1;0F j ¼ ða0;�1uj�1 þ auj þ a0;1ujþ1 þ a0;2ujþ2Þ=h; ð2:11Þ

which provides an a-family of third-order schemes with
a1;0 ¼ 1; a0;1 ¼ �a=2þ 3=4; a1;�1 ¼ a=3þ 1=6; a0;�1 ¼ �11a=18� 23=36; a0;2 ¼ a=9� 1=9:
a ¼ 0:8915319975352406 gives the optimal resolution for the first derivative. For briefness, this scheme will be
referred to as the 4P3O m1 scheme later.

The seventh-order accuracy scheme is
hða1;�1F j�1 þ a1;0F jÞ þ h2ða2;�1Sj�1 þ a2;0SjÞ ¼
X5

n¼�1

a0;nujþn; ð2:12aÞ

hð�a1;�1F j�1 þ �a1;0F jÞ þ h2ð�a2;�1Sj�1 þ �a2;0SjÞ ¼
X5

n¼�1

�a0;nujþn: ð2:12bÞ
The free parameters chosen for optimization in the seventh-order accuracy scheme are coefficients of Sj and uj.
Letting a2;0 ¼ 0, a0;0 ¼ a, �a2;0 ¼ b and �a0;0 ¼ 0, we express other coefficients in the following expressions:
a2;�1 ¼ a=12þ 17=720; a1;�1 ¼ 49a=120þ 2033=7200; a1;0 ¼ 1;

a0;�1 ¼ �13489a=21600� 974513=1296000; a0;1 ¼ �5a=8þ 103=96; a0;2 ¼ 10a=27� 73=162;

a0;3 ¼ �5a=32þ 21=128; a0;4 ¼ a=25� 29=750; a0;5 ¼ 11=2592� a=216;



Fig. 1.
here is

Q. Zhou et al. / Journal of Computational Physics 227 (2007) 1306–1339 1311
�a2;�1 ¼ 203b=720þ 17=720; �a1;�1 ¼ 763b=800þ 2033=7200; �a1;0 ¼ 1;

�a0;�1 ¼ �393587b=1296000� 974513=1296000; �a0;1 ¼ �31b=96þ 103=96; �a0;2 ¼ 82b=81� 73=162;

�a0;3 ¼ �65b=128þ 21=128; �a0;4 ¼ �29=750þ 52b=375; �a0;5 ¼ 11=2592� 43b=2592:
Choosing top ¼ 2:5, we find the optimal parameters are a ¼ 0:8339762325591169 and b ¼
0:6167415381304258. Later on in the present paper, this seventh-order accuracy scheme is referred to as the
7P7Om2 scheme.

For values of coefficients of the three schemes proposed above, the reader is referred to Appendix A.
Following the manner mentioned above, we also constructed 4P4Om2, 5P5Om2 and 6P6Om2 schemes.

Though their computational costs are almost the same as that of the 7P7Om2 scheme, their spectral resolution
is not as good as that of the 7P7Om2 scheme. Therefore, they are not listed here.

2.2. Evaluation of the first derivative

The real part of the modified scaled wavenumbers for the first derivative is shown in Fig. 1. The 3P3Om2
scheme, which is almost the same as the 4P3Om1 scheme, seems to follow the exact solution more closely than
the standard sixth-order Pade scheme, though it has a narrower stencil width. The 7P7Om2 scheme has the
same stencil width as the tenth-order Pade scheme; however, it is seen to have much higher spectral accuracy
than the tenth-order Pade scheme. As a matter of fact, the proposed 7P7Om2 scheme is the most accurate one
in the spectral plane among all known compact schemes. The CUD-5 scheme, which has been extensively used
for solving various compressible and incompressible flows described by the Navier–Stokes equations [61–63],
however, has relatively poor spectral accuracy. So the proposed schemes are attractive alternatives to the
CUD-5 scheme. Table 1 provides a more quantitative comparison of the resolution properties of the schemes,
in which we compare these schemes using the function ~e ¼

R top
0
ðj�Reð�jÞÞ2 dj. Obviously, when the top stays

the same, the resolution increases with the decrease of ~e.
Fig. 2 shows that 4P3Om1, 3P3Om2 and 7P7Om2 have built-in numerical viscosity at high wavenumbers.

It can be seen that the 7P7Om2 scheme is less dissipative at moderate wavenumbers than the CUD-5 scheme,
which means that the smaller scales can be better resolved by the 7P7Om2 scheme when they are used to solve
problems with multi-scales, e.g., turbulence. All the upwind compact schemes shown here have strong dissi-
pation at high wavenumbers. The dissipation can be useful to suppress non-resolved small-scale instabilities.
It can also be helpful to inhibit odd-even decoupling observed in DNS with symmetric compact schemes [56].
However, Pade schemes and the C-D scheme are symmetric and essentially non-dissipative. When they are
scaled wavenumber
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Table 1
Comparison of the resolving efficiency

top ¼ 1:5 top ¼ 1:7 top ¼ 2:0

3P3Om2 0.508557E�08 0.596528E�06 0.706533E�04
4P3Om1 0.242689E�07 0.109257E�05 0.766258E�04
7P7Om2 0.441636E�07 0.104085E�06 0.131466E�06
Sixth-Pade 0.107860E�04 0.815729E�04 0.120426E�02
Tenth-Pade 0.358530E�08 0.838330E�07 0.573833E�05
Eighth-order C-D 0.204677E�07 0.343684E�06 0.158558E�04
CUD-5 0.137679E�03 0.883426E�03 0.952471E�02
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used in turbulence simulations, extra stabilizing filters are required, which are equivalent to adding numerical
dissipation in an ad hoc manner, to suppress poorly resolved waves.

2.3. Evaluation of the second derivative

There are second derivatives in the formulae of the 3P3Om2 and 7P7Om2 schemes that may have further
use [37], as for the diffusion terms in Navier–Stokes equations. Because of this, even though they are not our
main concern, the properties of the second derivatives should also be assessed. The plot of the real part of
modified scaled wavenumber for the second derivative against scaled wavenumber for a variety of schemes
is presented in Fig. 3. Generally speaking [57], it is better to obtain approximations of the second derivatives
directly rather than indirectly (i.e., applying the first derivative twice). This statement can be verified by com-
paring the curves of the Pade6 and Pade10 schemes for the second derivative with those using the correspond-
ing first derivatives twice. However, it seems that our case is the opposite situation. The second derivatives
obtained directly from 3P3Om2 and 7P7Om2 schemes, are accurate only with lower wavenumbers, which
are only comparable with the results of the explicit eighth scheme with first derivatives used twice. However,
the results when the first derivatives are used twice in the 4P3Om1, 3P3Om2 and 7P7Om2 schemes are a bit
better, especially in the 7P7Om2 case, which achieves high spectral accuracy to about 4/5 of the Nyquist wave-
number. This situation can be attributed to our main motivation, which is to develop and optimize schemes
for good spectral accuracy for the first derivative. At first, we did not consider what kind of influence the opti-
mization would have on the second derivative, but later we learned that the influence was negative; in other
words, good resolution was achieved at the sacrifice of the second derivative. As a whole, for the direct case,
the second derivatives from 3P3Om2 and 7P7Om2 show no competition with those from other compact
schemes. For the indirect case, only 4P3Om1 is comparable with other schemes, and the 3P3Om2 and
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7P7Om2 schemes are too time-consuming to be adopted in practice. Based on the above analysis, we do not
recommend 3P3Om2 or 7P7Om2 for the calculation of second derivatives through either the direct or indirect
methods. The 4P3Om1 scheme may be an alternative to other schemes for some problems because of its speed
advantage (see Section 5).

The plot of the imaginary part of the modified scaled wavenumber for the second derivative against the
scaled wavenumber for the proposed schemes is presented in Fig. 4. It illustrates the dispersion property of
the second derivative. All symmetric schemes for the second derivative have no dispersion error, which is
why they do not appear in the plot. However, upwind schemes have obvious deviation from the zero line
at high wavenumbers. The dispersion errors of the second derivatives computed directly from 3P3Om2 and
7P7Om2 are a bit bigger than that computed indirectly by 7P7Om2, which is better in the sense that there
is essentially no error at a wider range of wavenumbers. The worst results in these schemes come from indirect
calculation with the 3P3Om2 and 4P3Om1 schemes.

Based on the above analysis, a conclusion can be reached that upwind schemes do not perform very well if
used for second derivatives. So, for the viscous terms in N–S equations, commonly used symmetric schemes
are more recommended.
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2.4. Solution strategies with periodic boundary conditions

We consider a uniform 1-D mesh with the grid space denoted by h, consisting of N points:
x1; x2; . . . ; xj�1; xj; xjþ1; . . . ; xN . In order to illustrate the solution strategies with periodic boundary conditions,
for simplicity and no loss of generality, we take the 4P3Om1 scheme for example and implement it on all
points. Therefore we have (for convenience, in the following expressions in this subsection, we let A stand
for a1;�1, B stand for a1;0, Uj for the first derivative of the function u on point j, and Dj for
ða0;�1uj�1 þ auj þ a0;1ujþ1 þ a0;2ujþ2Þ=h):
B A

A B

A B

. .
. . .

.

A B

A B

26666666664

37777777775

U 01
U 02
U 03

..

.

U 0n�1

U 0n

26666666664

37777777775
¼

D1

D2

D3

..

.

Dn�1

Dn

26666666664

37777777775
: ð2:13Þ
Provided B 6¼ 0, the operations corresponding to � A
B

� �
Ej þ E1

� �
! E1 (Ej stands for the jth row of the system

(2.13)) are performed for each j ¼ n; n� 1; . . . 2 to eliminate the element A in the first row. The resulting sys-
tem has the form
Bþ Að� A
B Þ

n�1

A B

A B

. .
. . .

.

A B

A B

26666666664

37777777775

U 01
U 02
U 03

..

.

U 0n�1

U 0n

26666666664

37777777775

¼

D1 þ � A
B

� �
Dn þ � A

B

� �2
Dn�1 þ � � � � A

B

� �mþ1
Dn�m þ � � � þ � A

B

� �n�1
D2

D2

D3

..

.

Dn�1

Dn

266666666664

377777777775
:

ð2:14Þ
Then forward substitution can be performed for the solution. Normally, there is no need to do the elimination
work from n to 2. The ratio A=B is less than 1 for numerical stability, so if n is bigger than some value n0 we
will have ð�A=BÞn�1

< 1:0E�16 (n0 is the minimum positive integer satisfying this inequality), which is com-
parable to the round-off error of the machine. The fact illustrated above means that there is no influence on the
result of the computation if the (2.15)-like system with n > n0 is solved.
B

A B

A B

. .
. . .

.

A B

A B

26666666664

37777777775

U 01
U 02
U 03

..

.

U 0n�1

U 0n

26666666664

37777777775
¼

D1 þ � A
B

� �
Dn þ � A

B

� �2
Dn�1 þ � � � � A

B

� �n0�1
Dn�n0þ2

D2

D3

..

.

Dn�1

Dn

266666666664

377777777775
: ð2:15Þ
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So far we have learned that the solving of the system (2.13) is very efficient. When n is adequately large, it is
comparable with the solving of the system with non-periodic conditions. If the 7P7Om2 or 3P3Om2 scheme is
adopted, the resulting system can be solved in the same way except that A, B are 2� 2 matrices and Uj, Dj are
vectors of two elements.
3. Boundary closures

3.1. Boundary treatment for full spatial stability

A von Neumann matrix spectral analysis was developed in Ref. [36] to analyze spatial discretization
schemes for any explicit or implicit scheme to investigate the full domain simultaneously. This analysis allows
one to evaluate various boundary closures and their effects on the domain interior. Using this analysis, Seng-
upta et al. [36] found that some well-known compact schemes that were found to be G–K–S and time stable
are unstable for selective length scales, which is attributed to boundary closure. In this paper, we suggest a new
boundary treatment based on the interior schemes to remove this drawback.

All compact schemes can be written in an equivalent explicit form:
u0 ¼ Cu; ð3:1Þ

where u ¼ ½. . . uj�1; uj; ujþ1; . . . �T and u0 ¼ ½. . . u0j�1; u

0
j; u
0
jþ1; . . . �T. The analysis [36,47,58] is performed in the

wavenumber plane, with the unknown expressed in terms of the bi-lateral Laplace transform pair:
uðxjÞ ¼
Z

UðkÞeikxj dk: ð3:2Þ
The derivative of the function at xj can be expressed for the Fourier spectral method as
u0ðxjÞ ¼
Z

ikUðkÞeikxj dk; ð3:3Þ
and the corresponding expression for the numerical derivative using other discrete computing methods can be
written as
u0ðxjÞ ¼
Z

ikeqUðkÞeikxj dk: ð3:4Þ
Using Eq. (3.2) in Eq. (3.1) and comparing with Eq. (3.4), it can be readily shown that [36]
ðkeqÞj ¼ �i
XN

l¼1

CjlP lj ðP lj ¼ eiðl� jÞkhÞ: ð3:5Þ
In the present paper, the boundary treatment is an optimization process for resolution under the constraints of
stability. The stability of the boundary schemes is our main concern, based on which high resolution is also
pursued.

First take the 4P3Om1 scheme as the interior scheme for example. Note that the 4P3Om1 scheme may be
applied from j ¼ 2 to j ¼ N � 2. Therefore, it needs boundary schemes only at j ¼ 1, N � 1 and N in the con-
ventional way. Here we do not match the boundary schemes with the interior schemes by the conventional
method because it can not ensure the stability of near-boundary schemes (see Ref. [36]).

The method described below is not hard to handle, and, to our best knowledge, it is brand new.
The following steps detail the procedure for constructing boundary schemes:
(1) For the 1st point (the boundary point), the following scheme is recommended:
u01 ¼ ð�3u1 þ 4u2 � u3Þ=2h: ð3:6Þ

(2) For the 2nd point, we suggest an assistant scheme. The assistant scheme is not the one truly used on the

2nd point. However, it has a valuable function. It can be used to produce stable schemes for other points near
the boundary. The assistant scheme, shown below (3.7), is an a� b� family of schemes whose accuracy is at
least third-order:
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u02 ¼ ðc2;1u1 þ c2;2u2 þ c2;3u3 þ c2;4u4 þ c2;5u5 þ c2;6u6Þ=h; ð3:7Þ

where
c2;1 ¼ 4bþ a� 1=3;

c2;2 ¼ �15b� 4a� 1=2;

c2;3 ¼ 20bþ 6aþ 1;

c2;4 ¼ �10b� 4a� 1=6;

c2;5 ¼ a;

c2;6 ¼ b:
However, we should note that this assistant scheme is essentially unstable. After all the schemes become stable
with the help of the assistant scheme, the assistant scheme will be replaced with another scheme for the sake of
the stability of the 2nd point. We recommend the following explicit second-order central difference scheme
(3.8) to replace the assistant scheme (3.7),
u02 ¼ ð�u1 þ u3Þ=2h: ð3:8Þ

(3) For the 3rd point near the boundary, the scheme is produced by the combination of the assistant scheme

and the interior scheme. For the current case, the interior scheme is 4P3Om1, which has the following form on
the 3rd point:
u03 ¼
1

h

X2

n¼�1

a0;nu3þn � a1;�1u02

 !
=a1;0: ð3:9Þ
Substituting Eq. (3.7) into Eq. (3.9) yields the scheme on the 3rd point with a and b as free parameters. Work-
ing on the obtained scheme under the procedure listed in Section 2.1 we can get the scheme with the optimal
resolution under the constraints of stability. In this optimization we set top ¼ 1:0. The resulting optimal values
of a and b are 0:2316635846960722E�08 and �0:8639865391536755E�01. Thus, the scheme for the 3rd point
is obtained, which is
u03 ¼ 0:3149166539411899Eþ00u1 � 0:1552924451942358Eþ01u2

þ 0:1229197935024197Eþ01u3 � 0:1921363283034527E�01u4

� 0:1205200134841980E�01u5 þ 0:4007549715573577E�01u6: ð3:10Þ
These two values of a and b work well for the 3rd point. However, it does not necessarily mean that this
combination of a and b is a good choice for the point j ¼ 4 and other successive points. Schemes on near-
boundary points are prone to instability, so we should work on them point by point until the property of
the scheme on some point approaches that of the interior scheme. In short, the process of constructing the
boundary schemes is essentially a continuous transition from the assistant scheme to the interior scheme,
so all the boundary schemes are their intermediate versions.

(4) For the 4th point near the boundary, the scheme is developed in a similar manner. On this point, the
interior scheme has the following form:
u04 ¼
1

h

X2

n¼�1

a0;nu4þn � a1;�1u03

 !,
a1;0: ð3:11Þ
Substituting Eq. (3.7) into Eq. (3.9), and then substituting the obtained (3.9) directly into Eq. (3.11), the scheme
on the 4th point is obtained. Free parameters a and b are also included. Optimizing them under the constraints
of stability yields a ¼ 0:8650992966101587E�02 and b ¼ 0:3460392329851057E�01. So we get
u04 ¼ � 0:4007550301083819E�01u1 þ 0:3223617559816121Eþ00u2

� 0:1222025327151400Eþ01u3 þ 0:6326604756729091Eþ00u4

þ 0:3116855212361244Eþ00u5 � 0:4606922728407310E�02u6: ð3:12Þ
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(5) Following the same procedure, we get a ¼ 0:4522250370424067E�02 and b ¼ 0:2110056888528983E� 01
for the 5th point and a ¼ 0:4775523008358158Eþ00 and b ¼ �0:9528171799374116E�01 for point j ¼ 6. Using
the optimized parameters, we get the following schemes for the 5th and 6th points, respectively.
Table
Optim

j ¼ 3
j ¼ 4
j ¼ 5
j ¼ 6
u05 ¼ 0:2439117258895970E�01u1 � 0:1713875409769093Eþ00u2

þ 0:5962531044108447Eþ00u3 � 0:1492293792986813Eþ01u4 ð3:13Þ
þ 0:7473705734300687Eþ00u5 þ 0:3077184838077115Eþ00u6

� 0:1205200027386216E�01u7:

u06 ¼ �0:1096648176992323E�01u1 þ 0:7272086997699330E�01u2

� 0:2529357474000156Eþ00u3 þ 0:6584785916213984Eþ00u4 ð3:14Þ
� 0:1508480763411324Eþ01u5 þ 0:7434112820192262Eþ00u6

þ 0:3098242492375073Eþ00u7 � 0:1205200027386216E�01u8:
In the same way, all the schemes on the successive points can be considered as ‘‘boundary schemes’’ and can be
optimized for good resolution. However, farther away from the boundary, the influence of the boundary
diminishes quickly. On points 7 6 j 6 N � 2 there is no need to change these two free parameters because
of the good resolution characteristics of these points when the combination of a and b for point j ¼ 6 is used.
For conciseness, the optimal values of the free parameters are also listed in Table 2.

(6) For points j ¼ N � 1 and N, we recommend the following scheme expressions:
u0N�1 ¼ ð2uN þ 3uN�1 � 6uN�2 þ uN�3Þ=6h; ð3:15aÞ
u0N ¼ ð3uN � 4uN�1 þ uN�2Þ=2h: ð3:15bÞ
So far, all the boundary schemes have been produced. Near the left boundary, there are six boundary
schemes, which are (3.6), (3.8), (3.10), (3.12), (3.13) and (3.14). They are used for the points j ¼ 1; 2; 3; 4; 5
and 6, respectively. Near the right boundary, only two points need boundary schemes. They are j ¼ N � 1
and N. Schemes (3.15a) and (3.15b) are used for them.

There is nothing new in the process of calculating the first derivatives, just going through the point j ¼ 1 to
the point j ¼ N . Emphasis is placed on the point j ¼ 2 where the scheme used is (3.8), not the assistant scheme
(3.7).

For different nodes the real and imaginary parts of keqh are obtained from Eq. (3.5) and plotted as a func-
tion of kh in Figs. 5 and 6, respectively. Here a value of N is chosen sufficiently large so that the results pre-
sented for keqh do not depend upon this choice. We use 30 points, with the 1st and the 30th point as boundary
points. Since the first derivative in the interior scheme is upwind biased, the best resolution property, namely
the resolution closest to the property of the interior scheme, occurs on the 28th point. Fig. 5 shows that the
spectral resolution becomes more accurate on the spectral plane as j increases except for the right two bound-
ary points. It is noteworthy that the resolution has been very close to that of the point j ¼ 28 when j equals 6.
From Fig. 6 we can see that the scheme is stable on every point as expected.

If the 3P3Om2 scheme is taken as the interior scheme, the method for boundary closures is essentially not
changed except that not merely the first but also the second derivative of the point j ¼ 2 is offered in the assis-
tant scheme. We propose the following assistant expression for the second derivative:
u002 ¼ ðs2;1u1 þ s2;2u2 þ s2;3u3 þ s2;4u4 þ s2;5u5 þ s2;6u6 þ s2;7u7Þ=h2; ð3:16Þ
2
ized parameters for boundary closures for the 4P3Om1 scheme

top a b

1.0 0.2316635846960722E�08 �0.8639865391536755E�01
1.0 0.8650992966101587E�02 0.3460392329851057E�01
0.8 0.4522250370424067E�02 0.2110056888528983E�01
1.5 0.4775523008358158E+00 �0.9528171799374116E�01
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where
s2;1 ¼ �g � 5qþ 11=12;

s2;2 ¼ 5g þ 24q� 5=3;

s2;3 ¼ �10g � 45qþ 1=2;

s2;4 ¼ 10g þ 40qþ 1=3;

s2;5 ¼ �5g � 15q� 1=12;

s2;6 ¼ g;

s2;7 ¼ q:
Following the same procedures listed above, we can get schemes with good resolution satisfying the con-
straints of stability on the near-boundary points. The optimization results of free parameters are listed in
Table 3. Boundary schemes (3.6) and (3.15b) are used on the left and right boundary points. For the 2nd point
we also recommend the explicit second-order central difference Scheme (3.8).



Table 3
Optimized parameters for boundary closures for the 3P3Om2 scheme

top a b g q

j ¼ 3 1.0 -0.1490028782144423E�05 �0.2161896888074244E+00 0.1222489959707739E�01 �0.4171400590339880E+00
j ¼ 4 1.0 0.9168425800492562E�02 0.3667370129576726E�01 0.2663926459408015E�03 0.1598356508751940E�02
j ¼ 5 1.2 0.5462352011564656E+00 �0.1045420416167275E+00 0.1187901591785011E+00 0.4980439891685980E+00
j ¼ 6 1.5 0.5128715797018083E+01 �0.9974972133950721E+00 0.9542820125620346E+00 �0.5203265448047872E+01
j ¼ 7 1.5 0.1876948339134585E+01 �0.3608498048611949E+00 0.3770446571440025E+00 �0.1356626188389042E+01
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If the 7P7Om2 scheme is used on the interior points, the method for boundary closures is essentially the
same as that for the 3P3Om2 scheme. (Details can be found in Appendix B.)

Due to the constraints of stability on every point, the schemes proposed in this paper are third-order accu-
rate globally (second-order at boundaries) on a uniform grid when the boundary conditions are non-periodic.
However, through optimization, the proposed schemes are designed to possess enhanced spectral resolution.
The property of good spectral resolution of a scheme is quite important in fields such as aeroacoustics and
turbulence simulations. From Fig. 5, we can learn that the resolution of the near-boundary points is worse
than that of the interior points. So it is suggested that the mesh should be slightly clustered near the boundary
on the physical plane to pursue global high spectral accuracy.

Because there is no anti-diffusion on any point, FS-stability is stricter than time stability. Also, considering
that, multiplying the obtained derivatives by metric coefficients does not change the stability property of any
point, we can conclude that the schemes proposed above are FS-stable and are therefore also asymptotically
stable on a stretched grid with arbitrary strength. However, the schemes that only possess time stability may
become time unstable when the grid is stretched, so FS-stable schemes have a substantial advantage over other
schemes in regard to such problems that involve complex geometries on the physical plane, where clustered
meshes are often adopted.

3.2. Numerical verification

In this section, we use numerical solutions of the advection equation to identify the boundary closures that
yield stable solutions over long time periods.

Consider the one-dimensional advection equation, ut þ ux ¼ 0, with initial conditions u0ðxÞ ¼ sinðpxÞ,
defined on ½�1; 1� with boundary conditions uð�1; tÞ ¼ sinðpð�1� tÞÞ. Note that the exact solution to the
above equation is given by uexactðx; tÞ ¼ sinðpðx� tÞÞ:
T i m el(E. I l l u s t r a t i o n o f t h e a s y m p t o t i c i n s t a b i l i t y o f t h e 7 P 7 O m 2 s c h e m e w i t h p r o p o s e d b o u n d a r y c l o s u r e . S o l i d l i n e : 3 P 3 O m 2 ; d a s h e d l i n e :

m 1 ; d o t t e d l i n e : 7 P 7 O m 2 . Q . Z h o u e t a l . / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 2 7 ( 2 0 0 7 ) 1 3 0 6 – 1 3 3 91 3 1 9
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The time integration is performed by means of a three-stage, TVD Runge–Kutta scheme [54], which is also
adopted in all other numerical tests in the present paper. A uniform mesh with three different resolutions is
used for spatial discretization. Setting the CFL number to 0.1, we integrate the solution to t ¼ 100. Note that

the solution travels one wavelength in two time units. The L2 error,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

PN
j¼1ðuj � uexactÞ2

q
, is then examined

for boundedness. Fig. 7 illustrates the stability of the proposed schemes. It can be seen that the combina-
tions of the boundary and interior schemes are asymptotically stable. After a simple approximate estimate,
it is also clear that the formal accuracy of these schemes is third-order, one order higher than the scheme
presented by Sengupta et al. [52], who, to our best knowledge, were the first to consider FS-stability in
Ref. [36].
4. Hybridization for shock-capturing

4.1. Hybridization strategy

Compact schemes are very accurate in smooth regions with spectral-like resolution, but they have been
found to cause non-physical oscillations when they are applied directly to flows with discontinuities. The
non-physical oscillations (Gibbs’ phenomena) do not decline in magnitude when the grid is refined. Several
approaches have been proposed to overcome this difficulty. For a detail review the reader is referred to
[39]. Pirozzoli [45] has derived a hybrid compact-WENO scheme in which a conservative compact scheme
is developed to be coupled with the WENO scheme. The hybrid compact-WENO scheme generally outper-
forms Adams and Shariff’s [40] compact-ENO scheme in the sense that the WENO scheme yields higher accu-
racy than the ENO scheme at almost the same price. Ren et al. [39] considered the hybrid scheme as the
weighted average of two sub-schemes: the conservative compact scheme proposed by Pirozzoli [45] and the
WENO scheme. The weight function is designed to be continuous so that the abrupt transition from one
sub-scheme to another is avoided. Also, it is pertinent to mention that a switching function [46], named the
Jameson–Schmidt–Turkel switch (JST switch) after the inventors’ names by later investigators, has earlier
been proposed for a scalar dissipation model. The JST switch can be interpreted as a limiter. It activates
the dissipation term (usually the second-difference term) at not only discontinuities but also extrema in the
smooth region, which is too dissipative for high-resolution calculations. A novel switch based on second deriv-
atives was introduced by Sengupta et al. [50]. The method was very simple and was proven to be effective for
diagnosing the discontinuity of the Burgers equation. However, the threshold value must be selected cau-
tiously, because the threshold depends on the problem being solved. For example, a threshold value of 50 (rec-
ommended by the author) may be suitable for the 1-D sine wave, sinðxÞ. But when it is used to simulate
another smooth wave, sinð20xÞ, which inherently has larger second derivatives, many points will be misdiag-
nosed as discontinuities. It also should be noted that this problem can not be fixed by refining the mesh. Addi-
tionally, second derivatives as well as first derivatives oscillate from extreme positive values to extreme
negative values near discontinuities. Between the negative and positive extrema there exist second derivatives
with relatively small amplitudes. So, when a discontinuity comes up, the recommended upwind schemes might
not be patched in a continuous manner, but a staggered manner. The ruleless abrupt change of schemes may
result in unknown source terms with an unknown nature in the difference equation.

The drawback of the smoothness indicator in Ref. [39] is that it may mistake some points in smooth waves
for discontinuity points, especially in high-wavenumber waves. This issue is addressed in detail in the follow-
ing description of the hybridization process. In order to counter this deficiency, we identify the discontinuity in
two steps, where the details in the first step are almost the same as those in Ref. [39]. In the second step, a new
discontinuity indicator is adopted to pick out these points, which are taken as discontinuity in the preceding
step. The adoption of the second step only incurs a little computational cost; however, it can significantly
enhance the resolution of the solution.

In the present paper, the compact scheme can be expressed in the following form (h is set to 1 for simplicity
in the computation domain):
AU j�1 þ BU j ¼ Dj; ð4:1Þ
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where
U j ¼
u0j
u00j

" #
; Dj ¼

Pk2

n¼�k1

a0;nujþn

Pk2

n¼�k1

�a0;nujþn

26664
37775; A ¼

a1;�1 a2;�1

�a1;�1 �a2;�1

� �
; B ¼

a1;0 a2;0

�a1;0 �a2;0

� �
: ð4:2Þ
Also the WENO scheme can be expressed in this form:
B0Uj ¼ D0j; ð4:3Þ

where
U j ¼
u0j
u00j

" #
; D0j ¼

f̂ WENO
jþ1=2 � f̂ WENO

j�1=2

f ð2Þj

" #
; B0 ¼

1 0

0 1

� �
: ð4:4Þ
The f̂ WENO
jþ1=2 in expression (4.4) denotes the flux function of the WENO scheme, while f ð2Þj denotes the explicit

central difference scheme for the second derivative on the jth node. For the 3P3Om2 and 4P3Om1 schemes, the
WENO-3 scheme (third-order accurate at discontinuities and fifth-order accurate in the smooth region) [42] is
chosen for hybridization, while for 7P7Om2, the MPWENO-5 scheme (fifth-order accurate at discontinuities
and ninth-order accurate in the smooth region) [41] is employed. As regards f ð2Þj , the fourth-order and sixth-
order explicit central schemes are adopted for 3P3Om2 and 7P7Om2, respectively.

Multiplying Eq. (4.1) by rj and Eq. (4.3) by 1� rj, and adding the results together, we have
rjAUj�1 þ ðrjBþ ð1� rjÞB0ÞUj ¼ rjDj þ ð1� rjÞD0j: ð4:5Þ
Eq. (4.5) is reduced to a compact scheme if rj ¼ 1 and to the WENO scheme if rj ¼ 0. According to the spirit
of the hybrid scheme, it is necessary that the weight be directly related to the smoothness of the numerical
solution. The process of defining the weight function r is as follows:

(1) The smoothness indicator is designed to be [39]
rj ¼
j2Dfjþ1Dfjj þ e

ðDfjþ1Þ2 þ ðDfjÞ2 þ e
; ð4:6Þ
where Dfj ¼ fj � fj�1. The e is a positive real number to avoid possible division by zero. Following Ren et al.’s
[39] method, we choose e in the formula
e ¼ 0:9rc

1� 0:9rc
n2: ð4:7Þ
In Eq. (4.7), n acts as a threshold value. All fluctuations smaller than this value will be considered as turbulent
fluctuations and will not be damped by using the WENO scheme. For a detailed description of Eq. (4.7), the
reader is referred to [39]. It is apparent that rj 2 ½0; 1� and this will facilitate the choice of the threshold value rc

(see Eq. (4.8)). In this step the weight takes the following form [39]:
rj ¼ min 1;
rj

rc

� �
: ð4:8Þ
In our tests, n and rc are set to be 1� 10�4 and 0.6, respectively.
(2) We propose the following criterion to filter out these points around which smooth waves exist. The cri-

terion is applied only on points where rj is less than 1.
If both
a1ðjDfjj þ b1jDfj�1j þ b1jDfj�2jÞ > jDfjþ1j ð4:9Þ

and
a2ðjDfjþ1j þ b2jDfjþ2j þ b2jDfjþ3jÞ > jDfjj ð4:10Þ

hold true, rj is modified to 1; otherwise rj is set to 0. Note that b1 > 1;b2 > 1; a1ð1þ 2b1Þ > 1;
a2ð1þ 2b2Þ > 1, in inequalities (4.9) and (4.10).
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In step 1, we have learned that the ratio of jDfjþ1j to jDfjj is much greater or less than one if rj < 1. How-
ever, this does not necessarily mean that a discontinuity exists around point j. In Fig. 8, sine waves with wave-
numbers kh ¼ 3p

5
and kh ¼ p

5
are shown respectively. After step 1, we get rj < 1 on points

j ¼ 3; 4; 8; 9; 13; 14; 18; 19; 23 and 24, where the function u is still smooth. If WENO schemes are applied on
these points, it will produce noticeable dispersion and dissipation errors and the solution may be contami-
nated, so more information should be introduced from points in the neighborhood for the discontinuity diag-
nosis. This is why jDfj�1 j; j Dfj�2 j; j Dfjþ2j and jDfjþ3j show up and have larger weights ðbi > 1; i ¼ 1; 2Þ than
jDfjj and jDfjþ1j in this criterion. The weight sums of the LHS of inequalities (4.9) and (4.10), which are con-
trolled by the value of parameters ai and bi ði ¼ 1; 2Þ, should both be greater than 1, or we can not ensure that
discontinuity exists when any one of the inequalities fails. So aið1þ 2biÞ > 1 ði ¼ 1; 2Þ should be satisfied. For
simplicity and no loss of generality, we only discuss on the case of jDfj j>j Dfjþ1j. Under this condition, if
inequality (4.9) does not hold true, it implies that the average of jDfj�1j and jDfj�2j is smaller than jDfjþ1j,
so jDfjj is the greatest one. We can conclude that probably a discontinuity exists near the point j. If expression
(4.9) is satisfied, then we go on to check the inequality (4.10). If inequality (4.10) also holds true, which means
that jDfjj is not much greater than jDfjþ2 j or jDfjþ3j, we can arrive at the conclusion that there exists a smooth
wave around this point; otherwise the information that jDfjj is much greater than jDfjþ2j and jDfjþ3j can be
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obtained, which means that there is a discontinuity near the point j. The ai and bi ði ¼ 1; 2Þ in the criterion are
parameters that can be adjusted for different strengths of discontinuity. Generally speaking, the discontinuity
we capture becomes stronger with the increase of ai and bi ði ¼ 1; 2Þ. Numerical tests show that the combina-
tion of a1 ¼ 0:15; a2 ¼ 0:3 and b1 ¼ b2 ¼ 5 works well.

After these two steps are executed, the weight function rj is set to 0 only when the real discontinuity shows
up with the strength of some level measured by aið1þ 2biÞ > 1 ði ¼ 1; 2Þ or even stronger; otherwise it is chan-
ged to 1. The reason for these actions is that we expect the compact sub-scheme that has the property of good
dispersion relation preservation to dominate the hybrid scheme. In order to avoid the non-smooth transition
between the sub-schemes, the weight can be smoothed in the following simple way.

The weights near the point where rj ¼ 0 are modified using the expression
rjþi ¼ maxð0; rjþi � ð1� rjÞ expð�cjijÞÞ; ð4:11Þ
where
ði ¼ �m1 � � �m2; i 6¼ 0Þ: ð4:12Þ
Indices m1 and m2 are used to confine the domain affected by the discontinuity, and the parameter c is used
to adjust the influence on the neighbor weights when discontinuity occurs. Numerical tests show that m1 ¼ 3
and m2 ¼ 1 work well for the 4P3Om1 and 3P3Om2 schemes, and that m1 ¼ 4 and m2 ¼ 3 work well for the
7P7Om2 scheme. Numerical tests also show that c ¼ 1 is an appropriate choice for all these schemes.
4.2. Numerical tests for proposed hybridization strategy

In the following, two numerical tests are executed to confirm the high level of fidelity of the present hybrid-
ization method. For convenience, we label the hybrid schemes only using the names of the corresponding com-
pact schemes.

(1) We consider the scalar model problem with periodic boundaries:
ut þ ux ¼ 0; �1 6 x 6 1; t > 0;

uðx; 0Þ ¼ sinð30pxÞ; �1 6 x 6 1:
ð4:13Þ
Two tests are executed in this case, where the 7P7Om2 scheme hybridized with the MPWENO-5 scheme
is employed. In the first test, the proposed hybridization method is adopted, which concludes step 1 and 2.
In the second test, only step 1 is executed for calculating the weights. Using a uniform mesh with 101
points, we advance the time to t ¼ 0:5. The results are shown in Figs. 9(a) and (b), and the results from
the MPWENO-5 scheme are also provided for comparison. Due to the built-in dissipation, the waves are
all attenuated in amplitude. From Fig. 9(a) we can see that, in the step 1 case, both the dispersion error
and the dissipation error are larger than those of the step 1_2 case. Obviously, the unwanted enlarged errors
come from the combined MPWENO-5 schemes. Fig. 10 plots the distribution of the weight r in both the
first and last time step. We can see that the weights equal one on all points in the step 1_2 case, while the
weights on about 40% of the points are less than one in the step 1 case; namely, some points in smooth
waves are recognized as points of discontinuity. And what’s more, the computation becomes more time-
consuming.

(2) Our next test problem consists of testing the behavior of the scheme on a rather stringent scalar advec-
tion test problem. This is the same test problem that was catalogued in Jiang and Shu [53]. Thus we solve the
problem
ou
ot
þ ou

ox
¼ 0;

uðx; 0Þ ¼ u0ðxÞ; periodic

ð4:14Þ
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u0ðxÞ ¼
1

6
½Gðx; b; z� dÞ þ Gðx; b; zþ dÞ þ 4Gðx; b; zÞ�; �0:8 6 x 6 �0:6;

¼ 1; �0:4 6 x 6 �0:2;

¼ 1� j10ðx� 0:1Þj; 0 6 x 6 0:2;

¼ 1

6
½F ðx; a; a� aÞ þ F ðx; a; aþ aÞ þ 4F ðx; a; aÞ�; 0:4 6 x 6 0:6;

Gðx; b; zÞ ¼ e�bðx�zÞ2 ;

F ðx; a; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1� a2ðx� aÞ2; 0Þ:

q
ð4:15Þ
The constants in Eqs. (4.15) are given by
a ¼ 0:5; z ¼ �0:7; d ¼ 0:005; a ¼ 10; b ¼ log 2

36d2
:

This is a stringent test problem because it has a combination of functions that are not smooth and functions
that are smooth but sharply peaked. The problem is initialized on a mesh of 400 zones. It is run for a
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simulation time of 10, which corresponds to five traversals around the mesh. In doing so, the features cata-
logued in Eqs. (4.15) are advected over 2000 mesh points. The problem is run with a CFL number of 0.1.

In Fig. 11(a) we show the results from the proposed hybrid schemes. The results from WENO-3 and MPW-
ENO-5 and the exact solution are also shown in the figure for comparison. It can be seen that the different
shapes have been accurately advected. Notice, too, that the profiles of all the pulses are almost symmetrical
about their peaks, which is a very desirable feature in a numerical algorithm. Figs. 11(b) and (c) show the mag-
nifications of the numerical solution. We can see that the square wave profile has become sharper than the
MPWENO-5 scheme when the primary scheme is 7P7Om2 in the hybrid scheme. Also the triangular pulse
is the most acute when 7P7Om2 is adopted. The 3P3Om2 and 4P3Om1 schemes also perform very well in this
rather stringent test. It can be seen that both of them are a little more dissipative than the WENO-3 scheme,
which is due to their third-order accuracy.

In Fig. 12, the distributions of the weight r at the last time step with respect to the mesh points from 1 to
400 are shown. It is clear that the proposed compact schemes overwhelmingly dominate the computation even
in this rather stringent test. The percentages of the zero weight for the 7P7Om2, 3P3O2 and 4P3Om1 cases are
about 8%, 3% and 2%, respectively.
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5. Cost comparison

Often compact schemes are used in the simulation of complex flows with shock waves. Therefore, in this
section, the computational cost of the hybrid schemes proposed is assessed and compared to that of the stan-
dard Pade schemes. Assuming that the solution is smooth in most of the field, we execute the comparison as
follows.

All the schemes concerned here are hybridized with WENO schemes for shock-capturing by the means
listed in Section 4.1. For convenience, we distinguish the hybrid schemes using the names of the corresponding
compact schemes. We do not consider the operations for calculating fluxes using WENO schemes because they
are almost the same when the same criterion is used for identifying discontinuity. We do not count the oper-
ations for boundary treatment either, because these operations can be omitted when the number of points used
in the domain of computation is large.

The standard Pade schemes are of the form
Table
Operat

Pade4
Pade6
4P3Om
3P3Om
7P7Om

a Th
Au0 ¼ Bu; ð5:1Þ

where u ¼ ½. . . uj�1; uj; ujþ1; . . . �T and u0 ¼ ½. . . u0j�1; u

0
j; u
0
jþ1; . . . �T. A is a tri-diagonal matrix when the boundary

condition is non-periodic. Note that A and B are not constant matrices here because of hybridization. System
(5.1) is solved using the tri-diagonal matrix algorithm (TDMA) [64,65] for high efficiency. For periodic bound-
ary conditions, matrix A is periodic tri-diagonal so the efficient algorithm CTDMA [66] is used.

Using the 4P3Om1 scheme as the interior scheme, for non-periodic boundary conditions we have the fol-
lowing form of equations on every interior node:
u0j ¼
X2

n¼�1

a0;nujþn � a1;�1u0j�1: ð5:2Þ
For periodic boundary conditions, system (2.13) is applied.
If the interior scheme is the 3P3Om2 or 7P7Om2 scheme, for non-periodic boundary conditions we have
u0j ¼ ~a1;�1u0j�1 þ ~a2;�1u00j�1 þ
Xk

n¼�1

~a0;nujþn; ð5:3aÞ

u00j ¼ e~a1;�1u0j�1 þ e~a2;�1u00j�1 þ
Xk

n¼�1

e~a0;nujþn ð5:3bÞ
on every interior node (k ¼ 1 for 3P3Om2 and k ¼ 5 for 7P7Om2). For periodic boundary conditions block
matrices will be solved. The strategies for these solutions have been illustrated in Section 2.4. The operation
count per node with boundary conditions is shown in Table 4. Note Total2 ¼ Total1þ ð6þ 3Þ, where (6 + 3)
is the number of operations performed when the proposed criterion for discontinuity is executed. Total2 oper-
ations are used in real calculations. Obviously, the 4P3Om1 scheme is the fastest one.

The operation count per node with periodic boundary conditions is shown in Table 5. It can be seen that,
while 3P3Om2 and 7P7Om2, to some degree, are more time-consuming than other schemes, the 4P3Om1
scheme is still the fastest one. Also, the strategies proposed in Section 2.4 can be implemented in the periodic
case when the grid number is adequately large, which will reduce the computational cost by about 40%. The
4
ion count per node with boundary conditions

LHS RHS Total1 Total2

5 + 3a 1 + 1 6 + 4 12 + 7
5 + 3 2 + 2 7 + 5 13 + 8

1 0 + 0 5 + 4 5 + 4 11 + 7
2 0 + 0 10 + 8 10 + 8 16 + 11
2 0 + 0 18 + 16 18 + 16 24 + 19

e entries are of the form, ‘‘number of multiples/divisions + adds/subtracts’’.



Table 5
Operation count per node with periodic conditions

LHS RHS Total1 Total2

Pade4 10 + 6 1 + 1 11 + 7 17 + 10
Pade6 10 + 6 2 + 2 12 + 8 18 + 11
4P3Om1 5 + 2 (2 + 1) 4 + 3 9 + 5 (6 + 4)a 15 + 8 (12 + 7)
3P3Om2 40 + 22 (16 + 9) 5 + 3 45 + 25 (21 + 12) 51 + 28 (27 + 15)
7P7Om2 40 + 22 (16 + 9) 12 + 10 52 + 32 (28 + 19) 58 + 35 (34 + 22)

a Datum enclosed in parentheses denote the operation count per node when the number of points in the computational domain is very
large.
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operation count per node for the proposed schemes with large grid numbers is shown enclosed in parentheses
in Table 5.

We suggest the 4P3Om1 scheme for laminar-related problems because of its high efficiency, especially when
the flow is smooth, in which case no hybridization is needed and therefore the computational cost is only 1/5
and 1/3 of that of the 7P7Om2 scheme with periodic and non-periodic schemes respectively (see Tables 4 and
5). For turbulence-related problems, the 7P7Om2 scheme is recommended because of its high spectral accu-
racy. The Pade schemes are not recommended here because they are not as fast as the 4P3Om1 scheme,
and they are much less accurate than the 7P7Om2 scheme in the spectral space. Furthermore, Pade schemes
require stabilizing filters to suppress poorly resolved waves because of the non-dissipation property, which
incurs more computational cost.
6. Numerical tests

A series of numerical tests of scalar problems have been presented in the above paragraphs. The proposed
schemes were also tested in some complicated cases, the inviscid Burgers equation, 2-D and 3-D N–S equa-
tions respectively. In the following tests, if not noted otherwise, both 4P3Om1 and 3P3Om2 are hybridized
with the WENO-3 scheme, while 7P7Om2 is hybridized with the MPWENO-5 scheme. For convenience,
we use the names of the compact schemes to denote the corresponding hybrid schemes.
6.1. Inviscid Burgers equation

This equation is used as the first case of a nonlinear equation and can be written as ou
ot þ u ou

ox ¼ 0, subject to
the initial condition uðx; 0Þ ¼ 0:3þ 0:7 sinðpðxþ 1ÞÞ with a periodic boundary condition defined on the
domain �1 6 x 6 1.

The Lax-Friedrichs splitting method is used, in which f �ðuÞ ¼ ðf ðuÞ � auÞ=2 and a ¼ maxuðf 0ðuÞÞ. Fig. 13
shows the results at t ¼ 2=p by using only the proposed compact schemes, not their corresponding hybrid ver-
sions. Strong Gibbs’ phenomena appear at the discontinuity with all these three schemes. The influences of
Gibbs’ phenomena are confined in about three points on both sides when the 4P3Om1 and 3P3Om2 schemes
are used. But for the 7P7Om2 scheme, which has a wider stencil, the influence spreads away to about ten
points on both sides. Fig. 14(a) shows the results at t ¼ 2=p with several different schemes. It can be seen that
there are essentially no Gibbs’ phenomena when WENO-3 and MPWENO-5 schemes are used to solve this
problem. Also, strong Gibbs’ phenomena disappear when our compact schemes are hybridized. For a clearer
picture, see Fig. 14(b), the local enlarged plot of Fig. 14(a), which illustrates the proposed schemes’ capability
of capturing discontinuities. The curve computed by 4P3Om1 is basically between the curves computed by
WENO-3 and MPWENO-5, which is not a bad result for a third-order scheme. However, the curve obtained
from 3P3Om2 is almost the flattest one, a bit flatter than that from WENO-3. This may be ascribed to its rel-
atively higher inherent numerical viscosity. The 7P7Om2 scheme attracts more attention because of its excel-
lent performance, which is even better (sharper) than MPWENO-5. Near the discontinuity, MPWENO-5
is brought in by hybridization for good shock-capturing. The numerical dissipation, as a result, is a combina-
tion of that of 7P7Om2 and MPWENO-5. Due to 7P7Om2’s lower dissipation, it is certain that the result
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dissipation is lower than that of MPWENO-5. From this test, it can be concluded that the shock-capturing
method proposed in this paper performs well for nonlinear problems.

6.2. Shock-wave/boundary-layer interaction

In this test case, an oblique shock wave is made to impinge on a laminar boundary layer that has been
developing on a flat plate. The impingement causes the boundary layer to separate at the shock impinging
point, which subsequently reattaches, thus creating a separation bubble while maintaining laminar flow con-
ditions throughout. The Mach number upstream of the shock is M1 ¼ 2:0, and the corresponding shock angle
is 32.49�. The Reynolds number, Re1 ¼ 2:96� 105, is based on the upstream velocity and the shock impinge-
ment distance on the flat plate for an inviscid flow. A schematic diagram of the flow geometry is shown in Ref.
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[43] (see Ref. [44] for more details). Computations are carried out on a mesh with ð101� 55Þ grid points that
are uniform in the stream-wise direction, but clustered in the transverse direction close to the flat plate. Based
on the Steger–Warming [55] flux vector splitting, three tests are executed, using 4P3Om1, 3P3Om2 and
7P7Om2 for space discretization of the convective flux, respectively. The diffusive flux terms of the Navier–
Stokes equations are discretized by the explicit central fourth-order scheme when 4P3Om1 and 3P3Om2
are adopted, and, for the 7P7Om2 case, the explicit central eighth-order scheme is chosen.

Fig. 15 shows the coefficient of skin-friction Cf in comparison with the experimental data [67]. The filled
symbols in Fig. 15, which represent the experimental data of negative values for the Cf in the separated flow
region, indicate that their magnitudes have not been measured and have been set to zero for convenience. The
numerical results including the separation location and length agree favorably with the experimental data.
This good agreement indicates that our hybrid schemes have good shock-capturing properties. It also demon-
strates that the boundary closures proposed in virtue of the assistant scheme are successful in practice.

6.3. Shock–vortex interaction

This problem describes the interaction between a stationary shock and a vortex. The computational domain
is taken to be ½0; 2� � ½0; 1�. A stationary Mach 1.1 shock is positioned at x ¼ 0:5 and normal to the x-axis. A
small vortex is superposed to the flow left of the shock and centered at ðxc; ycÞ ¼ ð0:25; 0:5Þ. Referring to Ref.
[53], we describe the vortex as a perturbation to the velocity ðu; vÞ, temperature ðT ¼ p=qÞ, and entropy
ðS ¼ lnðp=qcÞÞ of the mean flow and we denote it by the tilde values:
~u ¼ eseað1�s2Þ sin h;

~v ¼ �eseað1�s2Þ cos h;

~T ¼ �ðc� 1Þe2e2að1�s2Þ

4ac
;

eS ¼ 0;
where s ¼ r=rc and r2 ¼ ðx� xcÞ2 þ ðy � ycÞ
2. Here e represents the strength of the vortex, a controls the decay

rate of the vortex, and rc is the critical radius for which the vortex has the maximum strength. In this paper, we
choose e ¼ 0:3; rc ¼ 0:05 and a ¼ 0:204. The above defined vortex is a steady state solution to the 2-D Euler
equation.

We use a grid of 251� 101 which is uniform both in the x and y direction. The upper and lower boundaries
are set to be reflective. In Figs. 16(a)–(e), we compare the results obtained by WENO-3, MPWENO-5,
x

C
f

0.02 0.04 0.06 0.08 0.1 0.12
-0.001

0

0.001

0.002

0.003

3P3Om2
4P3Om1
7P7Om2
Experimental data
Zero values

Fig. 15. Coefficient of friction for the shock/boundary-layer interaction.



x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

xy0 0.20.40.60.8 1 0 0.20.40.60.81
x y



1332 Q. Zhou et al. / Journal of Computational Physics 227 (2007) 1306–1339
4P3Om1, 3P3Om2 and 7P7Om2. Thirty contours are drawn for the pressure component in the range of (1.02,
1.4). We see that the five schemes give essentially the same resolution, which means our hybrid method for
shock-capturing functions quite well. A careful examination reveals that the WENO-3, 4P3Om1 and
3P3Om2 schemes are slightly better in the sense that less numerical noise is generated, which is due to their
dissipation properties. And the shock wave captured by 7P7Om2 is the most slender one. This superiority
of the 7P7Om2 case is achieved in three ways. First, the MPWENO-5 scheme has a higher formal order; it
is at least fifth order. It can resolve sharper shocks on its own than other schemes with lower orders. Second,
7P7Om2 is much less dissipative than the MPWENO-5 scheme. Third, the hybrid between these two schemes
is quite effective.

Figs. 17(a)–(e) represent 30 equally spaced pressure contours at t ¼ 0:8 with the entire pressure range being
1:1 6 p 6 1:3. It can be seen that one branch of the shock bifurcations has reached the top boundary and has
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Fig. 17. 2-D shock–vortex interaction. Pressure, Thirty contours from 1.1 to 1.3, t ¼ 0:8: (a) 4P3Om1; (b) 3P3Om2; (c) 7P7Om2;
(d) MPWENO-5; (e) WENO-3.
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been reflected. The reflection is well captured by all these schemes, which indicates that not only the hybrid
method but also the boundary closures for the proposed scheme perform well. The shock wave resolved by
7P7Om2 is still the most slender one. Also we can see that the results of the 4P3Om1 and 3P3Om2 schemes
are a bit sharper than that of the WENO-3 scheme (see the distributions of contours near shock waves; those
of 4P3Om1 and 3P3Om2 are a bit closer to those of MPWENO-5 and 7P7Om2 than those of WENO-3),
which may be attributed to the relatively better spectral presentation. (Remember that WENO-3 has a formal
order equal to or higher than those of 4P3Om1 and 3P3Om2.)

For our hybrid schemes, the percentage of interfaces on which the WENO fluxes are needed is around 5%
during the simulation. When comparing these schemes in terms of computational cost, we find that 4P3Om1 is
the fastest one. The CPU time needed to execute one time step for the 4P3Om1 scheme is about 0.24 s, and for
3P3Om2, 7P7Om2, WENO-3 and MPWENO-5, it is 0.26 s, 0.29 s, 0.36 s and 0.56 s on the same machine
respectively.

6.4. Decaying compressible isotropic turbulence

Due to the high spectral presentation, the proposed 7P7Om2 scheme has been shown to be very promising
for turbulence research. In this section, it is tested by the numerical simulation of decaying compressible iso-
tropic turbulence with an initial Taylor microscale Reynolds number of 72. Based on the Steger–Warming [55]
flux vector splitting, the convection terms are discretized by the hybrid version of 7P7Om2. The eighth-order
explicit central difference scheme is used to discretize viscous terms, and the three-stage TVD-type Runge–
Kutta method is used for time advancement. The simulations are conducted with 1283 grid points. Then, they
are compared with a 1283 simulation with the spectral-like tenth-order compact finite differencing scheme by
Samtaney et al. [68]. The simulations begin with the same initial field, the D8 case in Ref. [68], in which the
initial turbulent number Mt is 0.5.

In Fig. 18, it can be seen that the present results by using the hybrid scheme agree well with the results of
Ref. [68]. This means that the upwind compact 7P7Om2 scheme is not over-dissipative compared with the
commonly used non-dissipative Pade schemes and therefore is suitable for turbulence research. The velocity
derivative skewness is a high-order statistic, and depends mostly on the high wavenumbers. The fairly good
agreement of this quantity verified our results.

However, close observations reveals that the present curve of the normalized turbulent kinetic energy is a
bit lower at the early stage. To search for a reasonable explanation for this minor offset, we executed another
test for the same case, in which 7P7Om2 was used with no hybridization with MPWENO-5. The results of this
t/�0 1 2 3 4 5 6 7 -016
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test are shown in Fig. 19, from which we can see that our results coincide exactly with those from Ref. [68].
Remember that Samtaney et al.’s [68] attempts at DNS of decaying compressible turbulence suffered from a
start-up problem; the highest Mt value their simulation could reach was 0.5. They thought the start-up prob-
lem was probably related to the appearance of shocklets with associated flow gradients larger than their uni-
form Pade scheme could resolve. We agree with Samtaney et al.’s [68] explanation. After shocklets develop
from the initial field, compact schemes, including the tenth-order Pade scheme and our 7P7Om2 scheme,
can introduce strong Gibbs’ phenomena in the flow. The Gibbs’ phenomena can incur negative pressures
or temperatures and finally make the simulations collapse. In the Mt ¼ 0:5 case, the highest Mt value the
tenth-order Pade scheme can manage, there probably exist Gibbs’ phenomena, though they are not strong
enough to develop negative pressures or temperatures. Gibbs’ phenomena near the shocklets can make the
amplitude of velocity fluctuations a bit bigger and therefore the turbulent kinetic energy appears to be a
bit higher than the real situation. So, the result from the hybrid version of the 7P7Om2 scheme can be more
reasonable. It is expected that our hybrid scheme will lift the maximum initial turbulent Mach number to a
higher value. This possibility requires future investigation.

7. Concluding remarks

A family of high-order compact upwind difference schemes has been developed. Due to their combination
of the first or both the first and second derivatives, the proposed schemes are more accurate than normal com-
pact difference schemes in the spectral plane. Because all the derivative terms in the schemes appear only on
the upwind side of the stencil, the first derivatives can be obtained by efficient methods regardless of whether
the boundary is periodic or non-periodic. A new method with the assistant scheme for boundary closure is
proposed. The method makes the combinations of boundary schemes and interior schemes FS-stable and
therefore can be a general method for boundary closures. Also, based on Ren et al.’s [39] method, an improved
efficient shock-capturing method has been developed with good shock-capturing property and higher spectral
resolution in the full computational domain, because the application of the WENO schemes is confined only
on the points and their near-neighbor points where discontinuity exists.

When our schemes are hybridized with corresponding WENO schemes, from Fourier analysis and compu-
tational cost, it can be seen that the 4P3Om1 scheme has the overwhelming advantage of speed, especially
when the flow is smooth, in which case no hybridization is needed and therefore the computational cost is only
1/5 and 1/3 of that of the 7P7Om2 scheme with periodic and non-periodic boundary conditions respectively;
the 3P3Om2 scheme possesses a bit higher spectral resolution than the 4P3Om1 scheme and it is the most
robust one because of its larger dissipation; the 7P7Om2 scheme, though a little more time-consuming than
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the 4P3Om1 and 3P3Om2 schemes, is the most accurate one in the spectral plane among all known compact
schemes. The good spectral resolution, combined with the almost non-dissipation property at small and mod-
erate wavenumbers and the abundance of dissipation at high wavenumbers, makes it an extremely attractive
DNS candidate. At last, both the effectiveness of the new hybrid method and the accuracy of the proposed
schemes were verified by executing four benchmark test cases.

The presented schemes can be easily extended by including third or even higher derivatives in them, which
may enhance the spectral accuracy of the first derivative to a higher level. However, obtaining the first deriv-
atives from these schemes may be too time-consuming, especially when periodic boundary conditions are
adopted. This is why our consideration has been confined to only the first or both the first and second deriv-
atives in the present paper.
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Appendix A

The 4P3Om1 scheme:
hða1;�1F j�1 þ a1;0F jÞ ¼
X2

n¼�1

a0;nujþn:
Values of coefficients in the 4P3Om1 scheme are listed as follows:
a1;�1 ¼ 0:4638439991784135Eþ00; a1;0 ¼ 0:1000000000000000Eþ01;

a0;�1 ¼ �0:1183713998493758Eþ01; a0;0 ¼ 0:8915319975352406Eþ00;

a0;1 ¼ 0:3042340012323797Eþ00; a0;2 ¼ �0:1205200027386216E�01:
The 3P3Om2 scheme:
hða1;�1F j�1 þ a1;0F jÞ þ h2ða2;�1Sj�1 þ a2;0SjÞ ¼
X1

n¼�1

a0;nujþn;

hð�a1;�1F j�1 þ �a1;0F jÞ þ h2ð�a2;�1Sj�1 þ �a2;0SjÞ ¼
X1

n¼�1

�a0;nujþn:
Values of coefficients in the 3P3Om2 scheme are listed as follows:
a2;�1 ¼ �0:2415794482633768E�01; a2;0 ¼ 0:0000000000000000Eþ00;

a1;�1 ¼ 0:4275261655209870Eþ00; a1;0 ¼ 0:1000000000000000Eþ01;

a0;�1 ¼ �0:1165447193107818Eþ01; a0;0 ¼ 0:9033682206946493Eþ00;

a0;1 ¼ 0:2620789724131689Eþ00;

�a2;�1 ¼ �0:8659286486676146E�01; �a2;0 ¼ 0:3268142702664771Eþ00;

�a1;�1 ¼ 0:2402214053997156Eþ00; �a1;0 ¼ 0:1000000000000000Eþ01;

�a0;�1 ¼ �0:6201107026998578Eþ00; �a0;0 ¼ 0:0000000000000000Eþ00;

�a0;1 ¼ 0:6201107026998578Eþ00:
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The 3P3Om2 scheme:
hða1;�1F j�1 þ a1;0F jÞ þ h2ða2;�1Sj�1 þ a2;0SjÞ ¼
X1

n¼�1

a0;nujþn;

hð�a1;�1F j�1 þ �a1;0F jÞ þ h2ð�a2;�1Sj�1 þ �a2;0SjÞ ¼
X1

n¼�1

�a0;nujþn:
Values of coefficients in the 7P7Om2 scheme are listed as follows:
a2;�1 ¼ 0:9310913049103751E�01; a2;0 ¼ 0:0000000000000000Eþ00;

a1;�1 ¼ 0:6229014060727505Eþ00; a1;0 ¼ 0:1000000000000000Eþ01;

a0;�1 ¼ �0:1272749478440892Eþ01; a0;0 ¼ 0:8339762325591169Eþ00;

a0;1 ¼ 0:5516815213172187Eþ00; a0;2 ¼ �0:1417371978176110Eþ00;

a0;3 ¼ 0:3375371366263799E�01; a0;4 ¼ �0:5307617364301992E�02;

a0;5 ¼ 0:3828260838312490E�03;

�a2;�1 ¼ 0:1974979614451061Eþ00; �a2;0 ¼ 0:6167415381304258Eþ00;

�a1;�1 ¼ 0:8705783531030047Eþ00; �a1;0 ¼ 0:1000000000000000Eþ01;

�a0;�1 ¼ �0:9392395461173919Eþ00; �a0;0 ¼ 0:0000000000000000Eþ00;

�a0;1 ¼ 0:8737605449787167Eþ00; �a0;2 ¼ 0:1737383472431471Eþ00;

�a0;3 ¼ �0:1491265623318568Eþ00; �a0;4 ¼ 0:4685482662075237E�01;

�a0;5 ¼ �0:5987610393367404E�02:
Note that h is set to 1 in the expressions of the 3P3Om2 and 7P7Om2 schemes when optimizations are exe-
cuted (see Section 2.1 for details), so all simulations using these two schemes must be handled on the compu-
tational domain with grid space 1. The metrics of the mapping may then be used to attain the derivatives on
the physical grid.

Appendix B

In the following, the boundary closure for the 7P7Om2 scheme is expressed.

For the near-boundary point, the following assistant schemes are suggested
u02 ¼ ðc2;1u1 þ c2;2u2 þ c2;3u3 þ c2;4u4 þ c2;5u5 þ c2;6u6Þ=h ðA2:1aÞ
u002 ¼ ðs2;1u1 þ s2;2u2 þ s2;3u3 þ s2;4u4 þ s2;5u5 þ s2;6u6 þ s2;7u7Þ=h2 ðA2:1bÞ
where
c2;1 ¼ 4bþ a� 1=3; c2;2 ¼ �15b� 4a� 1=2

c2;3 ¼ 20bþ 6aþ 1; c2;4 ¼ �10b� 4a� 1=6

c2;5 ¼ a; c2;6 ¼ b

s2;1 ¼ �g � 5qþ 11=12; s2;2 ¼ 5g þ 24q� 5=3

s2;3 ¼ �10g � 45qþ 1=2; s2;4 ¼ 10g þ 40qþ 1=3

s2;5 ¼ �5g � 15q� 1=12; s2;6 ¼ g; s2;7 ¼ q:
Substitute Eqs. (A2.1a) and (A2.1b) into the 7P7Om2 schemes (2.12), and let j ¼ 3; then we get the scheme on
the 3rd point with a; b; g and q as free parameters. Using the procedure listed above we can get the scheme with
the optimal resolution satisfying the constraints of stability. The optimized parameters are listed in Table 6 for
points j ¼ 3 and j ¼ 4.

For points j > 5, it is hard to find the appropriate combination of these four parameters to yield stable
schemes, so we apply the obtained scheme for point j ¼ 4 on several points j P 5. In order to apply boundary
schemes on fewer points, we propose another group of assistant schemes on point j ¼ 5:



Table 6
Optimized parameters for boundary closures for the 7P7Om2 scheme

top a b g q

j ¼ 3 0.5 �0.4597194851313051E�04 �0.2229215518065442E�01 �0.3281278903290147E�02 �0.1903040656679567E�01
j ¼ 4 0.5 0.6445072034704367E�02 0.2556920319768490E�01 �0.1133605612534359E�02 �0.6822714905771861E�02
j ¼ 11 1.0 �0.5873973995736736E�04 �0.5148455592181436E�03 �0.1041938950948995E�04 �0.9132531330896965E�04
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u05 ¼ ðc5;1u1 þ c5;2u2 þ c5;3u3 þ c5;4u4 þ c5;5u5 þ c5;6u6 þ c5;7u7 þ c5;8u8 þ c5;9u9 þ c5;10u10Þ=h; ðA2:2aÞ
u005 ¼ ðs5;1u1 þ s5;2u2 þ s5;3u3 þ s5;4u4 þ s5;5u5 þ s5;6u6 þ s5;7u7 þ s5;8u8 þ s5;9u9 þ s5;10u10Þ=h2; ðA2:2bÞ
where
c5;1 ¼ 1=140þ aþ 8b; c5;2 ¼ �1=15� 8a� 63b

c5;3 ¼ 3=10þ 28aþ 216b; c5;4 ¼ �1� 56a� 420b

c5;5 ¼ 1=4þ 70aþ 504b; c5;6 ¼ 3=5� 56a� 378b

c5;7 ¼ �1=10þ 28aþ 168b; c5;8 ¼ 1=105� 8a� 36b

c5;9 ¼ a; c5;10 ¼ b

s5;1 ¼ g þ 8q; s5;2 ¼ �8g � 63qþ 1=90

s5;3 ¼ 28g þ 216q� 3=20; s5;4 ¼ �56g � 420qþ 3=2

s5;5 ¼ 70g þ 504q� 49=18; s5;6 ¼ 3=2� 56g � 378q

s5;7 ¼ �3=20þ 28g þ 168q; s5;8 ¼ 1=90� 8g � 36q

s5;9 ¼ g; s2;10 ¼ q:
Then optimizations are executed on points j P 6. The schemes are not stable until j ¼ 11, and the optimal
values of these free parameters for high resolution are also listed in Table 6. For the right boundary schemes,
the following expressions are suggested:
u0N�4 ¼
1

105
uN�1 �

1

10
uN�2 þ

3

5
uN�3 þ

1

4
uN�4 � uN�5 þ

3

10
uN�6 �

1

15
uN�7 þ

1

140
uN�8

� �	
h;

u0N�3 ¼
1

105
uN �

1

10
uN�1 þ

3

5
uN�2 þ

1

4
uN�3 � uN�4 þ

3

10
uN�5 �

1

15
uN�6 þ

1

140
uN�7

� �	
h;

u0N�2 ¼ � 1

20
uN þ

1

2
uN�1 þ

1

3
uN�2 � uN�3 þ

1

4
uN�4 �

1

30
uN�5

� �	
h;

u0N�1 ¼ ð2uN þ 3uN�1 � 6uN�2 þ uN�3Þ=6h;

u0N ¼ ð3uN � 4uN�1 þ uN�2Þ=2h:

ðA2:3Þ
Finally, we list the schemes in the full domain when 7P7Om2 is applied as the interior scheme. The expressions
for points j ¼ 1; 2 are as follows:
u01 ¼ ð�3u1 þ 4u2 � u3Þ=6h;

u02 ¼ ð�u1 þ u3Þ=2h:
For points j ¼ 3; 4 the schemes that come from the assistant scheme on the 2nd point are used. The derived
schemes on the 4th point are also applied to points j ¼ 5 to j ¼ 10. For points j ¼ 11 the schemes that come
from the assistant scheme on the 5th point are used. On points 12 6 j 6 N � 5 the 7P7Om2 schemes are
adopted. For points N � 4 6 j 6 N , the schemes in (A2.3) are used.
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